近年来,在生成的对抗网络(GAN)领域已取得了很大的进步,尤其是在基于样式的架构的出现,这些架构解决了许多关键的缺点 - 无论是在建模能力和网络可解释性方面。尽管有这些改进,但在卫星图像领域中采用这种方法并不简单。生成任务中使用的典型视觉数据集是良好的对准和注释的,并且具有有限的可变性。相比之下,卫星图像表现出很大的空间和光谱变异性,广泛的高频细节的存在,而注释卫星图像的繁琐本质会导致注释稀缺性 - 进一步激励了无监督学习的发展。从这个角度来看,我们介绍了第一个基于训练的样式和小波的GAN模型,该模型可以很容易地在各种环境和条件下综合了一系列逼真的卫星图像,同时还可以保留高频信息。此外,我们表明,通过分析网络的中间激活,人们可以发现许多可解释的语义方向,这些方向促进了卫星图像的指导综合,而无需使用任何形式的监督。通过一组定性和定量实验,我们证明了我们框架的功效,这是在适合下游任务(例如,数据增强),合成成像质量以及不看到数据集的概括能力方面的功效。
translated by 谷歌翻译
本文解决了在预训练的生成对抗网络(GANS)的潜在空间中找到可解释方向的问题,以便于可控的图像合成。这种可解释的方向对应于可以影响合成图像的样式和几何体的变换。然而,利用线性技术来查找这些变换的现有方法通常无法提供直观的方式来分离这两个变化源。为了解决这个问题,我们建议a)对中间表示的张量进行多线性分解,b)使用基于张量的回归来利用该分解对潜在空间的映射方向。我们的方案允许与张量的各个模式相对应的线性编辑,并且非线性的编辑模型它们之间的乘法相互作用。我们通过实验显示我们可以利用前者与基于几何的转换更好的单独的风格,以及与现有作品相比,后者产生一组可能的变换。与目前的最先进,我们展示了我们的方法的效果和定性。
translated by 谷歌翻译
Models that accurately predict properties based on chemical structure are valuable tools in drug discovery. However, for many properties, public and private training sets are typically small, and it is difficult for the models to generalize well outside of the training data. Recently, large language models have addressed this problem by using self-supervised pretraining on large unlabeled datasets, followed by fine-tuning on smaller, labeled datasets. In this paper, we report MolE, a molecular foundation model that adapts the DeBERTa architecture to be used on molecular graphs together with a two-step pretraining strategy. The first step of pretraining is a self-supervised approach focused on learning chemical structures, and the second step is a massive multi-task approach to learn biological information. We show that fine-tuning pretrained MolE achieves state-of-the-art results on 9 of the 22 ADMET tasks included in the Therapeutic Data Commons.
translated by 谷歌翻译
最近显示出一种仅通过神经元的尖峰实现的计算系统,即语法,即进行简单的英语句子的依赖性解析。我们解决了这项工作所留下的两个最重要的问题:选区(句子的关键部分,例如动词短语)和处理依赖句子的处理,尤其是中央句子。我们表明,语言的这两个方面也可以由神经元和突触以与已知或被广泛相信的语言器官的结构和功能兼容的方式来实现。令人惊讶的是,我们实施中心嵌入的方式指出了无上下文语言的新表征。
translated by 谷歌翻译
Variational inference uses optimization, rather than integration, to approximate the marginal likelihood, and thereby the posterior, in a Bayesian model. Thanks to advances in computational scalability made in the last decade, variational inference is now the preferred choice for many high-dimensional models and large datasets. This tutorial introduces variational inference from the parametric perspective that dominates these recent developments, in contrast to the mean-field perspective commonly found in other introductory texts.
translated by 谷歌翻译
Knowledge graphs (KG) have served as the key component of various natural language processing applications. Commonsense knowledge graphs (CKG) are a special type of KG, where entities and relations are composed of free-form text. However, previous works in KG completion and CKG completion suffer from long-tail relations and newly-added relations which do not have many know triples for training. In light of this, few-shot KG completion (FKGC), which requires the strengths of graph representation learning and few-shot learning, has been proposed to challenge the problem of limited annotated data. In this paper, we comprehensively survey previous attempts on such tasks in the form of a series of methods and applications. Specifically, we first introduce FKGC challenges, commonly used KGs, and CKGs. Then we systematically categorize and summarize existing works in terms of the type of KGs and the methods. Finally, we present applications of FKGC models on prediction tasks in different areas and share our thoughts on future research directions of FKGC.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) for semantic segmentation is a promising task freeing people from heavy annotation work. However, domain discrepancies in low-level image statistics and high-level contexts compromise the segmentation performance over the target domain. A key idea to tackle this problem is to perform both image-level and feature-level adaptation jointly. Unfortunately, there is a lack of such unified approaches for UDA tasks in the existing literature. This paper proposes a novel UDA pipeline for semantic segmentation that unifies image-level and feature-level adaptation. Concretely, for image-level domain shifts, we propose a global photometric alignment module and a global texture alignment module that align images in the source and target domains in terms of image-level properties. For feature-level domain shifts, we perform global manifold alignment by projecting pixel features from both domains onto the feature manifold of the source domain; and we further regularize category centers in the source domain through a category-oriented triplet loss and perform target domain consistency regularization over augmented target domain images. Experimental results demonstrate that our pipeline significantly outperforms previous methods. In the commonly tested GTA5$\rightarrow$Cityscapes task, our proposed method using Deeplab V3+ as the backbone surpasses previous SOTA by 8%, achieving 58.2% in mIoU.
translated by 谷歌翻译
The development of social media user stance detection and bot detection methods rely heavily on large-scale and high-quality benchmarks. However, in addition to low annotation quality, existing benchmarks generally have incomplete user relationships, suppressing graph-based account detection research. To address these issues, we propose a Multi-Relational Graph-Based Twitter Account Detection Benchmark (MGTAB), the first standardized graph-based benchmark for account detection. To our knowledge, MGTAB was built based on the largest original data in the field, with over 1.55 million users and 130 million tweets. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations. In MGTAB, we extracted the 20 user property features with the greatest information gain and user tweet features as the user features. In addition, we performed a thorough evaluation of MGTAB and other public datasets. Our experiments found that graph-based approaches are generally more effective than feature-based approaches and perform better when introducing multiple relations. By analyzing experiment results, we identify effective approaches for account detection and provide potential future research directions in this field. Our benchmark and standardized evaluation procedures are freely available at: https://github.com/GraphDetec/MGTAB.
translated by 谷歌翻译
The performance of inertial navigation systems is largely dependent on the stable flow of external measurements and information to guarantee continuous filter updates and bind the inertial solution drift. Platforms in different operational environments may be prevented at some point from receiving external measurements, thus exposing their navigation solution to drift. Over the years, a wide variety of works have been proposed to overcome this shortcoming, by exploiting knowledge of the system current conditions and turning it into an applicable source of information to update the navigation filter. This paper aims to provide an extensive survey of information aided navigation, broadly classified into direct, indirect, and model aiding. Each approach is described by the notable works that implemented its concept, use cases, relevant state updates, and their corresponding measurement models. By matching the appropriate constraint to a given scenario, one will be able to improve the navigation solution accuracy, compensate for the lost information, and uncover certain internal states, that would otherwise remain unobservable.
translated by 谷歌翻译